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of the discretization is then minimized. This idea is called
global discretisation where attention is no longer paid toThe three-dimensional, time-dependent convection-diffusion

equation (CDE) is considered. An exponential transformation is used the individual spatial and temporal derivatives but to the
to collectively transform the CDE. The idea of global discretization whole equation. With this idea, four finite difference
is used, where attention is paid to the whole transformed CDE, but schemes are established for both the CDE and the trans-
not to the individual spatial and temporal derivatives in the equation.

formed CDE. The modified PDEs, following Warming andFour finite difference schemes for both CDE and transformed CDE
Hyett [10], are obtained, which indicate that the schemesare established. The modified partial differential equations of these

schemes are obtained, which indicate that the trunction errors of are of either second or fourth order if the time step is
the schemes can be of second and fourth order, depending on the properly prescribed. A series of analytical solutions to both
prescription of the time step length. Some characteristic physical the Navier–Stokes and Burgers equations are chosen as
parameters, i.e., local Reynolds number, local Strouhal number,

benchmark cases against which the new method is assessed.and viscous diffusive length, are introduced into the schemes and
The paper is organized as follows. Sections 2 and 3 demon-the viscous diffusive length is found to be a significant parameter

in relating temporal discretisation with spatial discretisation. A se- strate the major steps in establishing the finite difference
ries of benchmark analytical solutions of Navier–Stokes and Burgers schemes. Section 4 provides the formulation of the schemes
equations, as well as the numerical solutions using the well-known for the CDE and the schemes for the transformed CDE
discretisation schemes, are used to investigate the properties of the

are given in the Appendix. Section 5 presents the analyticalderived schemes. The high-order schemes achieve higher resolu-
solutions and the numerical algorithms chosen to bench-tions over the conventional schemes without decreasing much the

sparsity of the matrix structures. Grid refinement studies reveal mark the schemes. The numerical experiments are de-
that the inverse exponential transformation of the finite difference scribed in Section 6. The results are discussed in Section
schemes tends to destroy some resolution of the schemes, espe- 7 and conclusions drawn from the work close out the
cially for large local Reynolds number. Q 1997 Academic Press

paper.

2. CONVECTION-DIFFUSION EQUATION1. INTRODUCTION

AND ITS TRANSFORMATIONOne of the major issues is computational fluid dynamics
(CFD) is the discretization of the Navier–Stokes (N-S) Consider the general equation, i.e., the CDE:
equations, which are sets of three-dimensional, time-
dependent, convection-diffusion equations (CDE). This
paper presents a new way to establish finite difference f
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schemes for the CDE, that is, global discretization. The
discretization of a partial differential equation (PDE) with

1 s(t, x, y, z).conventional finite differencing [1] is well known. Typi-
cally, discretisation pays attention to individual derivative

The coeffecients ax , ay , az , and b can be reasonably as-terms in the PDE, where the objective is to approximate
sumed locally constant. In most existing solution algo-the PDE by replacing it with a set of discretized equations
rithms, e.g., SIMPLE [3], PISO [11], and fractional stepthat are created using some prescribed pattern. Here, the
method [12], the pressure derivatives are treated as aPDE is treated in totality and the integral truncation error
source term in the momentum equations. Here, it is as-
sumed that the source term in Eq. (1) is a function of both

1 To whom correspondence should be addressed. space and time.
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FIGURE 1

Introducing the exponential transformation (a) second-order explicit scheme (SOES),
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and applying the transformation to Eq. (1) leads to the
transformed version of the convection-diffusion equation (b) second-order implicit scheme (SOIS),
or CEDT,
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(c) fourth-order strongly implicit schemes (FOSIS),where
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The exponential transformation eliminates the convection
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ij11k11) (7)term in the CDE, thereby giving a conduction equation.
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3. DISCRETISATION OF CDET
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ijk11);Generally, the discretization of a PDE is to replace the
PDE point-by-point with a discretized equation, which is
basically a relation between the value at a central point (i, (d) fourth-order weakly implicit schemes (FOWIS),
j, k) and those of its neighbours in both space and time,
as shown in Fig. 1. The terms in (3) are discretised here T n
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using the method outlined in Yang et al. [13], wherein the
nodal points are arranged to ensure that the odd deriva- 1 c3(T n
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tives cancel in the Taylor series expansions about the nodal
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i11j11k)points. Thus, dispersive errors are eliminated. The schemes

considered here are the explicit, implicit, weakly implicit, 1 c5(T n21
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and strongly implicit schemes, which depend on what time
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i11jk11)layers of the nodal points are employed. With reference
to Fig. 1, the relationship between the value at node (i, j, 1 c7 T n21
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k) and those at its neighbours can be assumed, together
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ijk11).with their order; these are:
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The subscripts i, j, and k represent the nodal points in
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z4directions x, y, and z, respectively, and the superscript

stands for the temporal dimension. The coefficients, ci , in
the above schemes need to be determined. The derivation
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ijkof the finite difference form of the CDET using the second-
order implicit scheme (SOIS) is used to illustrate the major
steps and ideas. The other schemes can be obtained simi- 1 Oy
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larly.
A Taylor series expansion about a nodal point when
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(9) where k1 5 tb and k2 5 tc, the physical meanings of which

will be explained in the following section.
It should be noted that only the series of q 5 0 in Eq.1
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(10) (15) is needed if the time step is prescribed small enough.

The two series have the properties:
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where the spatial intervals of the grid points are denoted
We can rewrite Eq. (16) asby hx , hy , and hz in x, y, and z directions, respectively, and

t is the temporal step length.
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and, by successively substituting Eq. (14) into Eq. (12),
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For Eq. (6) to satisfy Eq. (19) at the maximum level, it is can be applied to the CDET to obtain the finite difference
approximation to the CDE. In the following, kx , ky , andnecessary that A0 5 A2 5 A3 5 A4 5 0, and A1 5 1, which

leads to a linear system of equations, kz are defined as
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sc sij21k 1 cn21
nc sij11k 1 cn21

bc sijk21 1 cn21
tc sijk11) dt.



114 XU, MATOVIC, AND POLLARD

FIGURE 2

The truncation error of the second-order schemes is of t and the derivatives of the source term s, which can
be easily controlled if the source term is known.

O SO1
i50

h2i
x k12i

1 D1 O SO1
i50

h2i
y k12i

1 D1 O SO1
i50

h2i
z k12i

1 D1 O(t), 5. BENCHMARK ANALYTICAL SOLUTIONS AND
NUMERICAL ALGORITHMS

while the truncation error of the fourth-order schemes is The accuracy and numerical behavior of the four
schemes outlined in the previous section are compared
to those of conventional numerical algorithms. The new

O SO2
i50

h2i
x k22i

1 D1 O SO2
i50

h2i
y k22i

1 D1 O SO2
i50

h2i
z k22i

1 D schemes and the conventional methods are benchmarked
against analytical solutions to Burgers equations and
Navier–Stokes equations. Additionally, a grid refinement

1 O FSO1
i50

h2i
x k12i

1 D SO1
i50

h2i
y k12i

1 DG study is done.
The first nonlinear analytical solution to Burgers equa-

tions was given separately by Hopf [14] and Cole [15].
1 O FSO1

i50
h2i

y k12i
1 D SO1

i50
h2i

z k12i
1 DG Cole [15] pointed out that this transformation could be

interpreted as a multidimensional transformation. Follow-
ing Cole’s idea, Fletcher [16] obtained two-dimensional

1 O FSO1
i50

h2i
x k12i

1 D SO1
i50

h2i
z k12i

1 DG1 O(t). steady solutions to Burgers equations and this approach
is extended here to three dimensions and time. The equa-
tions are

Here, it should be noted that the trucation errors can be
separated into two parts. The first part is basically the
products of hx k1 , hy k1 , hz k1 and the spatial derivatives of f

t
1 u

f

x
1 v

f

y
1 w

f

z
5

1
Re S2f

x2 1
2f

y2 1
2f

z2Dthe unknown variable f. The second part is the product
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FIGURE 3

where, in general, f 5 u, v, w. As is well known, the three-dimensional time-dependent
Navier–Stokes equations areThe nonlinear, but exact, solutions are

u 5 2
2

Re
[a2e2l(t/Re) nxf cos(nxfx) sin(nyfy) sin(nzfz)] d0

v
t

1 v ? =v 5 2=p 1
1

Re
=2v,

v 5 2
2

Re
[a2e2l(t/Re) nyf sin(nxfx) cos(nyfy) sin(nzfz)] d0 where v 5 (u, v, w) is the velocity vector and = 5

(/x)i 1 (/y)j 1 (/z)k.
Steinman et al. [17] provide a class of exact solutions forw 5 2

2
Re

[a2e2l(t/Re) nzf sin(nxfx) sin(nyfy) cos(nzfz)] d0 ,
these equations, combined with conservation of mass,

where u 5 2a2e2a2
1(t/Re)[ea2x sin(a2 y 6 a1 z) 1 ea2z cos(a2 x 6 a1 y)]

l 5 f 2(n2
x 1 n2

y 1 n2
z), v 5 2a2e2a2

1(t/Re)[ea2y sin(a2 z 6 a1 x) 1 ea2x cos(a2 y 6 a1 z)]

w 5 2a2e2a2
1(t/Re)[ea2z sin(a2 x 6 a1 y) 1 ea2y cos(a2 z 6 a1 x)]d0 5

1
a1 1 a2e2l(t/Re) sin(nx fx) sin(ny fy) sin(nz fz)

,

p 5 2As(u2 1 v2 1 w2),
where a1 and a2 are adjustable constants which control the
amplitude of the solutions. where a1 and a2 are adjustable constants, which control

the amplitude and frequency of the solutions.The exact solution is demonstrated, in part, by the vector
plot in Fig. 2, which displays the velocity field on three The flow field produced by these exact solutions is dis-

played in part in Fig. 3, where a1 5 2f and a2 5 0.1.surfaces of a cube, where three wavenumbers and two
parameters have been used as nx 5 ny 5 nz 5 3, a1 5 1, Several types of numerical algorithms for the solution

to the CDE are available; here, we choose those givenand a2 5 0.1.
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nodal points. The error of a scheme is estimated as the
maximum value of the three rms relative errors, «u , «v ,
and «w .

6.3. Scheme and Nomenclature Specification

Six numerical schemes are used to solve both Burgers
and Navier–Stokes equations. The schemes are: second-
order explicit scheme (SOES); second-order implicit
scheme (SOIS); fourth-order strongly implicit scheme
(FOSIS); fourth-order weakly implicit scheme (FOSIS),
which are supplemented by two other, more traditional,
schemes: a temporally first-order implicit scheme (FOIS)
and the Crank–Nicholson implicit scheme (CNIS).

6.4. Burgers Equations
FIGURE 4

In the numerical tests with Burgers equations, some
common test parameters are chosen. The three spatial
wave numbers in the analytical solution to Burgers equa-

in Patankar [3]. The exponential scheme of Patankar is tion are nx 5 ny 5 nz 5 3. The two adjustable parameters,
adopted for spatial discretization. In the temporal direc- which control the amplitude of the solution, are a1 5 1.0
tion, both first-order implicit and Crank–Nicholson im- and a2 5 0.1. Of course, other values can be easily chosen.
plicit schemes are used. Since the issue of velocity-pressure The total integration time is 0.1 and the computational
coupling is not considered in this paper, there is no need domain is cubic at 1 3 1 3 1 (dimensionless) and equally
to use a staggered grid. The arrangment of the collocated divided into 19 3 19 3 19 control volumes.
grid and the corresponding control volume in two dimen- In Test I, the time step, typically, is chosen as 1.0 3 1023

sions is given in Fig. 4. and the Reynolds number is 10. Table I gives the rms
relative errors for these six schemes, after 100 time steps.
It should be noted that the time step for the FOSIS is6. NUMERICAL TESTS
chosen as 1.0 3 1024; otherwise a stable solution could not

6.1. Boundary and Initial Conditions be obtained.
The rms error distributions on one plane that result fromThe Burgers and Navier–Stokes equations are solved,

applying the six schemes are presented in Fig. 5 with theboth analytically and computationally, over a cubic do-
error axes scaled to the same level. Increaseing the Reyn-main. The time dependent boundary conditions are pre-
olds number to 100, while maintaining the time step asscribed by the analytical solutions on the surfaces of the
1.0 3 1023 produces little change in the magnitudes of thecube. The initial conditions of the flow are those corre-
rms relative errors, after 100 time steps as noted in Table II.sponding to analytical solutions at t 5 0.

A number of grid refinement tests are performed. Pa-
rameter a1 in the analytical solution of Burgers equation

6.2. Error Evaluation
can be adjusted to control the amplitude of the velocity.
Numerical tests show that the behaviour of SOES, SOIS,The relative error fields are determined between the

numerical and the analytical solutions, that is, «f 5 FOIS, and CNIS are similar to one another, while those
of FOWIS are almost the same to FOSIS. Figure 6 displays( fnum 2 fana)/favg , where f can be any variable of u, v, w;

fnum and fana are numerical and analytical solutions and the typical numerical behaviour of SOES and FOWIS
when the grid spacings are refined. These results will befavg 5 [(1/N)(oN

n51 f 2
n)]1/2, where fn is the value of ana-

lytical solution on a nodal point n and N is the number of discussed later.

TABLE I

The Comparison of RMS Errors

Schemes SOES SOIS FOWIS FOSIS FOIS CNIS

Rms errors 9.3 3 1023 5.6 3 1022 1.7 3 1024 9.0 3 1024 6.0 3 1022 3.4 3 1022
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FIG. 5. Error comparisons of the six schemes against the exact solution of Burgers equations. A typical cross section is chosen at i 5 10 and
the error distributions are on an y-z plane: (1) SOES; (2) SOIS; (3) FOWIS; (4) FOSIS; (5) FOIS; (6) CNIS.
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TABLE II

The Comparison of RMS Errors

Schemes SOES SOIS FOWIS FOSIS FOIS CNIS

Rms errors 3.3 3 1023 3.8 3 1023 5.3 3 1024 5.3 3 1024 1.2 3 1022 6.9 3 1022

TABLE III

The Comparison of RMS Errors

Schemes SOES SOIS FOWIS FOSIS FOIS CNIS

Rms errors 3.1 3 1023 1.7 3 1022 3.6 3 1024 1.7 3 1024 1.7 3 1022 7.6 3 1023

6.5. Navier–Stokes Equations in Fig. 7 with the error axes scaled to the same level.
Increasing the Reynolds number, integration time, and

In the numerical tests with Navier–Stokes equations,
time step to 100, 10, and 0.1, respectively, while decreasing

some common test parameters are chosen. The number of
a2 to 0.01, gives the rms relative errors, after 100 time steps,

control volumes is chosen as 19 3 19 3 19. The computa-
as noted in Table IV. It should be noted that the time step

tional domain is set to a cube with side lengths of unity.
is chosen as 1.0 3 1024 for SOES and as 1.0 3 1023 for

The adjustable parameter, which controls the amplitude
FOSIS to enforce a stable solution.

of the solution, is a1 5 2f and a2 5 0.1, which controls
The grid refinement studies are done also in this case.

both the amplitude and the wave number of the solution.
Parameter a2 in the exact solution of N-S equation is used

The time step is chosen as 5.0 3 1023 and total integration
to control the amplitude of velocity. Again, it is observed

time is 0.5. The Reynolds number is set at 10. Table III
that the behavior of SOES, SOIS, FOIS, and CNIS are

gives the rms relative errors of the six schemes after 100
similar to one another, while that of FOWIS is almost the

time steps. It should be noted that the time step is chosen
same as FOSIS. Figure 8 shows the numerical behaviour

as 2.5 3 1023 for SOES and as 1.0 3 1024 for FOSIS to
of SOES and FOWIS when the grid spacing is refined. The

enforce a stable solution.
results will be commented upon in the following section.

The rms error distributions on one plane are presented

7. DISCUSSION

Usually, the conventional higher order difference
schemes achieve higher order accuracy by introducing
more neighbouring grid points into the schemes, for exam-
ple, Rai and Kim [7], which results in decreasing the spar-
sity of the discretized equation. And still further, the com-
pact difference schemes proposed in Lele [9] lose the sparse
property, which leads to a dense matrix when introducing
the derivatives on the center and its neighbour points. The
major advantage of the higher order difference schemes
(FOWIS and FOSIS) is that higher order accuracy is ob-
tained by decreasing the sparsity of the discretized equa-
tion as little as possible, which will significantly reduces the
computational work required to solve the sparse matrix.

The formulations of the difference schemes reveal three
types of characteristic parameters in the discretization of
CDE. The first type, kx , ky , kz , represents the local Reyn-
olds numbers based on the grid sizes in three spatial direc-

FIGURE 6 tions. The second type is the diffusive length, k1 5 tb, which
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FIG. 7. Error comparisons of the six schemes against the exact solution of Navier–Stokes equations. A typical cross section is chosen at i 5 10
and the error distributions are on an y-z plane: (1) SOES; (2) SOIS; (3) FOWIS; (4) FOSIS; (5) FOIS; (6) CNIS.
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TABLE IV

The Comparison of RMS Errors

Schemes SOES SOIS FOWIS FOSIS FOIS CNIS

Rms errors 1.1 3 1022 5.1 3 1022 7.9 3 1024 1.8 3 1024 5.0 3 1022 1.4 3 1022

can be interpreted as the region affected by molecular while by the method introduced in this paper, it reads
diffusion within the prescribed time interval of t. Actually,
via this parameter, the time interval t can be equivalent

fn
i 5

k1

h2
x 1 2k1

ekxfn
i21 1

k1

h2
x 1 2k1

e2kx fn
i11to the spatial step length. The third type, k2 , which, by

introducing a characteristic grid length size D, can be re-
written as k2 5 2U 2t/(4b) 5 21/4(UD/b)(tU/D) and 1

h2
x

h2
x 1 2k1

ek2f n21
i ,

U 2 5 a2
x 1 a2

y 1 a2
z . Thus, the physical interpretation of

k2 is the ratio of the local Reynolds number UD/b and the
local Strouhal number D/(tU). where k2 in a one-dimensional case should be written as

k2 5 tc, c 5 2a2
x/(4b).The transformation brings some numerical dissipation

into the difference schemes. This can be understood by Now, we see that the appropriate dissipating (or
weighting) function form should be 2ekx/(ekx 1 e2kx) rathernoticing that the effect of the transforamtion is to weight

the neighbours with respect to the central nodal point; this than ekx for convection-dominated one-dimensional flows.
The two functions are shown in Fig. 9, where it is seen thatweight is dependent upon the magnitude of the local grid

Reynolds number. To qualitatively check the property of the functions are in accord only when kx (local Reynolds
number) is small. This indicates that the schemes for CDEthis dissipation, the method introduced in [2] can be used.

The discretization form for the unsteady one-dimensional are only suitable for small local Reynolds number. Further-
more, the grid refinement studies reveal (Fig. 6 and 8)convection-diffusion model equation (see Patankar [3])

reads that the higher order schemes are sensitive to the local
Reynolds number and the order of the scheme resolution
tends to deteriorate with increasing local Reynolds num-

fn
i 5

k1

h2
x 1 2k1

2ekx

ekx 1 e2kx
fn

i21 1
k1

h2
x 1 2k1

2e2kx

ekx 1 e2kx
fn

i11 ber. This is deemed to be an impediment and future work
will be done to alleviate this defect.

It is interesting to note that the form of the transforma-1
h2

x

h2
x 1 2k1

f n21
i ,

tion function, i.e., Eq. (2), is similar in form to the differen-
tial filter function proposed by Germano [18] for use in
large eddy simulation (LES). In LES, the effect of the filter

FIGURE 8
FIGURE 9
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is to separate the large and small scales. The small scales are
d0 5

1
h2

x h2
y h2

z 1 2k1(h2
x h2

y 1 h2
y h2

z 1 h2
x h2

z)
,usually represented by some eddy-viscosity model, which is

basically a model of energy dissipation. Obviously, the
cn21

c 5 h2
x h2

y h2
z ek2 d0 cn

wc 5 c n
ec 5 k1 h2

y h2
z d0 ,transformation in the present schemes plays the same role

as a filter, as they introduce some numerical dissipation. cn
sc 5 c n

nc 5 k1 h2
x h2

z d0 , cn
bc 5 c n

tc 5 k1 h2
x h2

y d0
This dissipation vanishes when the local Reynolds number
is small enough, i.e., the grid resolution is sufficiently high. Sijk 5 Etn

tn21

cn21
c sijk dt.

8. CONCLUSION
The truncation error of the second-order schemes,

The idea of global discretization is explored in this paper.
Via this idea, four finite difference schemes for CDET, i.e.,

O SO1
i50

h2i
x k12i

1 D1 O SO1
i50

h2i
y k12i

1 D1 O SO1
i50

h2i
z k12i

1 DSOES, SOIS, FOWIS, and FOSIS, were established. The
diffusive length is found to be a significant parameter in

1 O(t).linking temporal discretisation with spatial discretisation.
Further, via an inverse exponential transformation, four
finite difference schemes for the CDE are obtained. The Fourth-order weakly implicit scheme (FOWIS),
numerical experiments indicate that higher resolutions are
achieved by the high order schemes, i.e., FOWIS and Tn

ijk 5 cn
wcTn

i21jk 1 cn
ecTn

i11jk 1 cn
scTn

ij21k 1 cn
nc Tn

ij11k
FOSIS, compared against the other four schemes, espe-

1 cn
bcTn

ijk21 1 cn
tcTn

ijk11 1 cn21
wsc Tn21

i21j21k 1 cn21
wncTn21

i21j11kcially for long-time integrations. The numerical tests show
that the stability requirement for SOIS and FOWIS is much

1 cn21
esc Tn21

i11j21k 1 cn21
enc Tn21

i11j11k 1 cn21
csb Tn21

ij21k21less restrictive than that for SOES and FOSIS. The grid
refinement study on the schemes for the CDE revealed 1 cn21

cst Tn21
ij21k11 1 cn21

cnb Tn21
ij11k21 1 cn21

cnt Tn21
ij11k11

that the inverse exponential transformation on the finite
1 cn21

wcbTn21
i21jk21 1 cn21

wct Tn21
i21jk11 1 cn21

ecb Tn21
i11jk21difference schemes for the CDET tends to destroy some

resolution of the schemes for the CDE and some future
1 cn21

ect Tn21
i11jk11 1cn21

c Tn21
ijk 1 cn21

wc Tn21
i21jkwork will address this defect.

1 cn21
ec Tn21

i11jk 1 cn21
sc Tn21

ij21k 1 cn21
nc Tn21

ij11k

APPENDIX: FINITE DIFFERENCE SCHEMES
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Second-order explicit scheme (SOES), d0 5
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ij21k11 The truncation error of the fourth-order schemes,
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